
DRAFT

Low-Rank Sparse Tensor Approximations
for Large High-Resolution Videos
Xiang Liu, Huyunting Huang, Weitao Tang, Tonglin Zhang, Baijian Yang

Purdue University
{xiang35, huan1182, tang384, tlzhang, byang}@purdue.edu

Abstract—Tensor decomposition techniques are becoming in-
creasingly important in processing videos with large sizes and
dimensions. Under the framework of CANDECOMP/PARAFAC
decomposition (CPD), this work studies low-rank sparse tensor
approximations (LRSTAs) to higher-order tensors. Both theo-
retical and practical properties are evaluated for LRSTAs to
represent large high-resolution videos. The evaluation brings
three major contributions of this work. Firstly, the theoretical
connection between CPD for high-order tensors and traditional
singular value decomposition (SVD) for matrices are estab-
lished, and the tensor rank for traditional SVD is defined. This
provides a theoretical basis to compare tensor-based approach
against matrix-based approach under the framework of tensor
decompositions. Secondly, the non-orthogonality of CPD and its
implications are revealed. The solution set of an LRSTA can only
be used as a whole. Thirdly, a computationally efficient algorithm
is developed. Its practical properties are also investigated in
object detection and recognition in high-resolution videos. The
results of the experiments showed that the proposed algorithm
can handle large high-resolution videos very efficiently in terms
of memory allocation. Results also revealed that commonly
used total variations may not be a good evaluation metric for
real world applications in computer vision. LRSTAs should be
evaluated using the end goal of the applications, such as the
accuracy of object detection and recognition.

Index Terms—Tensor decomposition, CP decomposition, PCA

I. INTRODUCTION

In this era of big data, the sizes of all kinds of data are
increasing significantly and so does the images and videos.
The sizes of frames and length of time are both increasing,
which leads to the great needs of an efficient video analyzing
tool. Since tensor or the multi-way array can naturally repre-
sent images or videos, tensor decomposition techniques can be
directly applied to those. These techniques are often developed
under the framework of CANDECOMP/PARAFAC decom-
position (CPD) [1]–[3] or Tucker decomposition (TKD) [4].
In this work, we examine the theoretical and the practical
properties of LRSTA under the framework of CPD for high-
resolution videos. We find that the choice of the rank value in
CPD cannot be small if it is applied to high-resolution videos.
Violation of orthogonality in CPD can cause a serious bias
if the rank-one tensors are not used together. Properties of
LRSTAs should be evaluated based on the results of object
detection and recognition given by neural networks rather than
a criterion developed based on relative total variations.

Because of the sizes of tensor data, it is hard to apply
machine learning methods directly. Tensor decompositions are

highly desirable to reduce the sizes of data. Both CPD and
TKD can be treated as extensions of traditional singular Value
decomposition (SVD) for matrices. The aim of CPD is to
decompose a given tensor into a sum of a number of rank-
one tensors. The aim of TKD is to decompose a given tensor
into a core tensor multiplied by orthogonal matrices along
their modes (i.e., coordinates). Since the core tensor is not
sparse in general, CPD is often used to develop LRSTAs for
higher-order tensors.

This work has three main contributions. The first is the
establishment of theoretical connection between traditional
SVD for matrices and CPD for higher-order tensors. We
provide a mathematical formulation to interpret tensor rank
for traditional SVD if it is applied individually to frames
of a video. This provides a basis to theoretically compare
tensor-based and matrix-based methods under the framework
of tensor decompositions. The second is the investigation
of nonorthogonality. Orthogonality of rank-one tensors in an
LRSTA is generally violated. Because of this, the set of
rank-one tensors given by an LRSTA must be used as a
whole, which is fundamentally different from the approach in
traditional PCA for matrices [5], [6]. The third is the evaluation
of the practical properties of tensor CPD. Our experiments
show that it is inappropriate to use a small rank value to
compute an approximation if the sizes of the objects are
relatively small, comparing to the sizes of frames of videos. To
detect and recognize small objects in a video, a moderate rank
value (e.g. a few thousand) is needed to strike the balance of
data reduction and detection accuracy.

The rest of the article is organized as follows. In Section II,
we provide a brief review of related work. In Section III,
we introduce tensor notations and definition of CPD. In
Section IV, we introduce our method, including its theoretical
properties and numerical algorithms. In Section V, the pro-
posed algorithm is implemented. The performance of object
detection and recognition are evaluated and compared against
the commonly used PCA appraoch. In Section VI, we conclude
this article.

II. RELATED WORK

In the literature, researchers have acknowledged that both
CPD and TKD can be used to construct low-rank tensor
approximations [7]. Both methods recommend calculating the
low-rank approximation by minimizing the Frobenius norm

DRAFT

between the given and approximate tensors. The approxima-
tions in both methods can be computed by the Alternating
Least Square (ALS) algorithm.

Previous work of low-rank approximations to high-order
tensors based on TKD can be found in [8]. The idea is to use a
reduced size core tensor rather than the full-size core tensor to
construct the approximation. Since the core tensor is generally
dense, low-rank approximations are often constructed by CPD
for high-order tensors. Statistical and computational properties
of low-rank approximations were discussed in [7]. It is pointed
out that the computation of the best low-rank approximation
is NP-hard. Recently, [9] proposed a statistical model to
construct rank-one approximations of high-order tensors and
this problem is also NP-hard. More generally, it has been
shown that most of the well-known tensor problems are NP-
hard [10], including the best low-rank approximation problem
for high-order tensors.A deeper dive into the computational
complexity shows that NP hard issues are only associated
with extreme cases. In fact, the ALS algorithm has been
successfully applied to many real world problems [11]. The
challenge is that directly applying ALS algorithm in FHD
videos may cause out of memory error.

III. CPD

For simplicity, we limit the introduction of tensor notations
and operations to the third-order tensors. Our approach can be
easily extended to arbitrary-order tensors.

A. Notation and Operation

Third-order tensors are generally expressed as X ∈ RI×J×K,
where I, J, and K are the horizontal, lateral, and frontal
dimensions of the given tensor. The (i, j, k)th entry of X ∈
RI×J×K is denoted by Xijk. The ith horizontal, the jth lateral,
and the kth frontal slices are J × K, I × K, and I × J
matrices denoted by Xi::, X:j:, and X::k, respectively. The
inner product of X,Y ∈ RI×J×K is defined as 〈X,Y〉 =∑I
i=1

∑J
j=1

∑K
k=1XijkYijk. The Frobenius norm of X is

‖X‖ = 〈X,X〉1/2. Tensors X and Y are said orthogonal and
denoted by X ⊥ Y if 〈X,Y〉 = 0. The outer product of vectors
a = (a1, . . . , aI)

> ∈ RI, b = (b1, . . . , bJ)
> ∈ RJ, and

c = (c1, . . . , cK)
> ∈ RK is a third-order tensor X ∈ RI×J×K

with Xijk = aibjck. A third-order tensor is said rank-one if
it can be expressed by an outer product of three vectors. The
Kronecker product of vectors a ∈ RI and b ∈ RJ is given
by a ⊗ b = (a1b

>, . . . , aIb
>)>. It is an IJ-dimensional

vector composed by products of all of the combinations of
elements in a and b. The Khatri-Rao product of matrices
A ∈ RI×K and B ∈ RJ×K is (IJ) × K matrix given by
A� B =

[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
.

B. CPD for Third-Order Tensors

The concept of CPD can be traced back to about 93 years
ago when [3] proposed to use the sum of rank-one tensors to
express a given tensor. It became popular after its introduction
to the psychometrics community in 1970 by [1], [2]. CPD is to

factorize a given tensor X ∈ RI×J×K into a sum of rank-one
tensors, such that it can be expressed by

X = Jλ;A,B,CK =
R∑
r=1

λrar ◦ br ◦ cr, (1)

where R is a positive integer, λr is a positive real number,
and ar ∈ RI, br ∈ RJ, and cr ∈ RK are unit vectors. In
equation (1), λ = (λ1, . . . , λR)

> ∈ RR is called the weight
vector, and A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R are called factor
matrices. The rank of X, denoted by rank(X), is the minimum
value of R such that (1) holds. The decomposition of (1) with
R = rank(X) is called the CP rank decomposition (CPRD) of
X. It has been pointed out that rank(X) ≤ min{IJ, IK, JK} for
any third-order tensor X ∈ RI×J×K [7]. Exact computation of
the rank of a general third-order tensor is NP-hard [10].

IV. LOW-RANK SPARSE TENSOR APPROXIMATION

As the rank of a third-order tensor is often large, full-rank
CPD is rarely used in practice. Low-rank sparse tensor approx-
imations (LRSTAs) are recommended. Rather than making
the decomposition exactly equal to a given tensor X, LRSTA
provides an approximation.

A. Tensor-Based versus Matrix-based Methods

Suppose that the estimator is given by CPD with rank R,
such that it can be expressed by X̂ = Jλ;A,B,CK, where
λ ∈ RR, A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R are defined
similarly as those given by (1). Then,

X̂ = argmin
λ,A,B,C

‖X− Jλ;A,B,CK‖, (2)

A pre-selected R, called the rank of the approximation and
denoted by rank(X̂), is needed in (2). Since R is unknown,
the relative total variation (for residuals) given by

rtv(X̂) =
‖X− X̂‖2

‖X‖2
(3)

is needed. It provides the best R by

Rα = argmin
rank(X̂):rtv(X̂)≥1−α

{rtv(X̂)}, (4)

where α ∈ [0, 1] is an relative error value. In other words,
Rα is the minimum rank of X̂ such that it can account for at
least (1 − α)100% total variations of X. Obviously, we have
Rα ≤ rank(X) and the equality holds if α = 0. We call this the
total variation approach for LRSTA. It is similar to traditional
PCA for matrices.

Traditional PCA can also be used to approximate X by
applying SVD to X::k for individual k ∈ {1, . . . , K}. The
approximation is provided by minimizing the relative total
variations based on each X::k. Let X̂PCA = Jd;U,V,EK
with U =

[
U1 · · · UK

]
, V =

[
V1 · · · VK

]
, E =

diag(1>R1
, . . . , 1>RK

), and d = (d>1 , · · · ,d>K)>, where dk =
(dk1, · · · , dkRk

)> ∈ RRk is a vector expression of Dk and
1Rk
∈ RRk is a vector with all of its elements equal to 1. Then,

U ∈ RI×
∑K

k=1 Rk , V ∈ RJ×
∑K

k=1 Rk are matrices spanned by
columns of Uk and Vk, E ∈ RK×

∑K
k=1 RK is constructed by

treating 1>Rk
as 1× Rk matrix and putting them to diagonals,

DRAFT

and d ∈ R
∑K

k=1 Rk is a vector spanned by singular values
given by diagonal elements of Dk for all k ∈ {1, · · · , K}. If
the numbers of columns of U, V, and E are all equal to a
preselected R, then we can define a tensor version of relative
total variations for X̂PCA similar to (3). We denote it by
rtvPCA(X̂PCA). If R is not given, then we can use an equation
similar to (4) to solve R for any relative error value α ∈ [0, 1].
We denote it by Rα,PCA.

Theorem 1. Rα ≤ Rα,PCA for any α ∈ [0, 1].

Proof. The conclusion is obvious because the form given by
X̂PCA is a special case of the form given by X̂.

Both X̂ and X̂PCA are approximations. Their ranks are
usually much lower than the rank of X. Therefore, they are
treated as reduced rank or low-rank approximations. Note that
X is derived by a tensor-based method but X̂PCA is derived by
a matrix-based method. We cannot compare a tensor rank with
a matrix rank, because the former is based on the entire tensor
but the latter is based on the slice matrices. Therefore, we need
to compare Rα with Rα,PCA. By Theorem 1, for a given α,
the number of rank-one tensors given by X̂ is lower than that
given by X̂PCA, implying that the approximation given by
CPD is more efficient than that given by PCA. However, PCA
for matrices enjoys orthogonality. Its relative total variation
can be completely determined by singular values. We can
use the largest Rk singular values to formula the best matrix
approximation for each X::k. This property also hold when it
is applied to third-order tensors.

Theorem 2. Rank-one tensors given by X̂PCA are all orthog-
onal.

Proof. Let ur, vr, and er be the rth columns of U, V, and
E, respectively. We want to show 〈ur ◦ vr ◦ er,ur ′ ◦ vr ′ ◦
er ′〉 = 〈ur,ur ′〉〈vr, vr ′〉〈er,er ′〉 = 0 for all r 6= r ′. We
consider two cases. In the first, we assume that there exists
k ∈ {1, . . . , K} such that

∑k−1
l=1 Rl < r, r ′ ≤

∑k
l=1 Rl.

Then, ur and vr are the (r −
∑k−1
l=1 Rl)th columns of Uk

and Vk, respectively. We have 〈ur,ur ′〉 = 〈vr, vr ′〉 = 0
by orthogonality of Uk and Vk. In the second, we assume
that the condition is violated. For any r < r ′, we can find
k ∈ {1, . . . , K− 1} such that r ≤

∑k
l=1 Rl < r

′. The positions
of 1 in er and er ′ are inconsistent. We have implying that
〈er,er ′〉 = 0.

We can easily derive the best tensor approximation in tra-
ditional PCA by examining the magnitudes of singular values
because rank-one tensors given by X̂PCA are orthogonal. This
idea does not apply to LRSTA because its rank-one tensors
are not orthogonal. To overcome the difficulty, a numerical
algorithm is needed.

B. Algorithm

The LRSTA given by (2) does not have a closed form
solution. Numerical methods must be used. The most often
used algorithm is the Alternating Least Squares (ALS). It is
the standard algorithm for both CPD and TKD. Currently, ALS
has been adopted by many software packages, including R,

MATLAB, and Python. A well-known issue in ALS is the
bottleneck caused by the matricized-tensor times Khatri-Rao
product (MTTKRP) [12], [13]. We prove that this can be easily
addressed. The following illustration uses third-order tensors
only, but it can be extended to tensors of arbitrary-order.

ALS solves A, B, and C in (2) individually in each of its
iterations. In particular, suppose that ALS has been used to
C. For given A and B, it solves C by C = argminC̃ ‖X −
J1R;A,B, C̃K‖2, leading to the solution as

C̃(A,B) = X(3)(B� A)[(B>B) ∗ (A>A)]†, (5)

where X(m) (for m = 1, 2, 3) is the mode-m matricization
(or unfolding) of X and M† represents the Moore-Penrose
pseudoinverse of matrix M. Similarly, we can define Ã(B,C)
and B̃(A,C). By alternating A← Ã(B,C), B← B̃(A,C), and
C← C̃(A,B), the solution of X̂ is derived once the algorithm
converges.

The bottleneck of MTTKPR appears in the computation of
B � A, the Khatri-Rao product of B and A, in (5). The term
X(3)(B�A) in (5) is called the MTTKPR of X(3) and B�A.
The storage of the corresponding results needs a large amount
of memory in size even if R is only moderately large. To
overcome the difficulty, we propose the modified ALS method.

Let A = (air)I×R, B = (bjr)J×R, and C̃ = (c̃kr)K×R.
Suppose that we want to solve c̃kr for all k ∈ {1, · · · , K} and
r = {1, · · · , R} by (2). Then, we can use the squared error loss
function as

L(C̃) =

I∑
i=1

J∑
j=1

K∑
k=1

(
Xijk −

R∑
r=1

airbjrc̃kr

)2
. (6)

Since the right side of (6) is a quadratic form, we can
analytically minimize L(C̃). In the end, we obtain

C̃mod = ZQ† (7)

where Z = (zkr)K×R with zkr =
∑I
i=1

∑J
j=1Xijkairbjr

and Q = (qr1r2)R×R with qr1r2 =∑I
i=1

∑J
j=1 air1ajr2bjr1bjr2 . Similarly, we can derive

Ãmod and B̃mod. The proposed Modified ALS is illustrated
in Algorithm 1.

Algorithm 1 Modified ALS
Input: Tensor X ∈ RI×J×K and rank R
Output: X̂ = Jλ;A,B,CK for (2)
Initialize A, B, C
repeat

A← Ãmod, B← B̃mod, and C← C̃mod
until convergence requirements meet
Normalize columns of A, B, and C for λ
return λ, and the normalized A, B, and C.

Theoretically, C̃mod and C̃ are identical, but the compu-
tation of C̃mod needs less memory. For instance, for FHD
videos, we have I = 1920 and K = 1080. If 50 frames
are considered, then K = 50 and the size of X for the
video is about 0.78GB. The possible value of R can be as

DRAFT

Video 1

Video 2

Figure 1. Dataset Overview

large as 1080 × 50 = 5.4 × 104. Suppose that we choose
R = 1000 in (2). Then, it is a small number, but B�A contains
1920×1080×1000 = 2.0736×109 real numbers. A computer
needs about 15GB memory to store the corresponding results.
The size of memory needed in the computation can be several
times higher. Because Q and Z only contain a few million
real numbers, the implementation of our modified ALS needs
much less memory (about 2 × 0.78 = 1.56GB) and can be
carried out even by a PC.

V. EXPERIMENTS

Four experiments were conducted in this work. The first
experiment is to study the memory bottleneck of LRSTA.
The second experiment is to compare the performance of
LRSTA against PCA. The third experiment is to evaluate
the impact of object detection and recognition problems on
tensor decomposition. The fourth experiment is to relate the
video resolutions with the numbers of rank-one tensors. All
experiments were performed on a machine with Intel i7-8700K
@ 3.70GHz CPU, 32GB RAM and 1T SSD. For color videos,
the LRSTA and PCA are applied channel-wise. We employed
scikit-learn for PCA algorithm [14]. We implemented LRSTA
in python given by our Algorithm 1. The tolerance of PCA
and LRSTA are set to 1e-4 and 1e-3 for all experiments. The
maximum iterations for LRSTA is 50.

A. Dataset

Two videos were evaluated in our experiments, denoted as
Video 1 and Video 2. An overview is shown in Figure 1. The
resolution of Video 1 and 2 is 1280 × 720 and 1920 × 1080
respectively.

B. Experiments

Experiment I. The first experiment is to verify the memory
bottleneck in algorithms for LRSTA based on the traditional
ALS and our modified ALS. The memory bottleneck arises
from the MTTKRP, which is mainly caused by the Khatri-Rao
product. This issue is not contained in our modified ALS. The
computation of Khatri-Rao product contains memory inflation
for large-size tensor with many rank-one tensors, which is
avoided in our method.

To reproduce the out-of memory (OOM) error of LRSTA,
we used python package Tensorly and R package rTensor.
We used the default settings for both Tensorly and rTensor.
We generated 1280× 720× 32 and 1280× 720× 64 tensors
sampling from the standard normal distribution. We chose
number of rank-one tensors as [1, 2, 4, . . . , 1024]. The OOM
error occurred in both methods when the number of rank-
tensors is larger than 128 for 1280 × 720 × 32 and 64 for
1280×720×64, respectively. This was caused by Khatri-Rao
product, because the OOM did not appear in our proposed
method. Our method successfully avoided the memory bot-
tleneck caused by Khatri-Rao product in the computation of
LRSTA. It worked well even when the rank-one tensor was
1024 for both 1280× 720× 32 and 1280× 720× 64 tensors.
Moreover, we found that the modified ALS could save up to
99% memory. For 1280× 720× 32 and 64 rank-one tensors,
the computation of MTTKRP requires 14 gigabytes, but our
proposed method only require approximately 500 megabyte.
And for 1280 × 720 × 64 and 32 rank-one tensors, the
computation of MTTKRP also requires 14 gigabytes, but our
proposed method only require approximately 250 megabytes.

Experiment II. The second experiment is to compare and
contrast the performance of LRSTA and PCA by changing the
number of rank-one tensors. We extracted 2 clips from each
video. The first clip contained 32 frames and the second clip
contains 64 frames. The experiments were performed on both
color and gray-scale versions of the clips. The following num-
ber of rank-one tenors were evaluated: {1, 2, 4, 8, . . . , 1024}.
The metrics used in this experiment was the relative total
variation, which is defined by equation (3) in Section IV-A.

Figure 2 depicts the relationship of relative total variation
with the number of rank-one tensors. It clearly shows that
the increase of the number of rank-one tensors leads to the
decrease of the relative total variation (for residuals) for both
LRSTA and PCA. Results clearly show that the more rank-
one tensors, the better tensor decomposition performance (less
relative total variation). The curves for PCA are above the
curves for LRSTA, indicating that the performance of LRSTA
is better than that of PCA. Similar phenomena was also
observed in the Video 1. Due to orthogonality, the curves
for PCA are almost overlapped in both plots. In contrast,
the curves for LRSTA are separated apart in both plots, with
colored versions having lower relative total variations. This is
caused by the non-orthogonality of CPD.

Experiment III. The third experiment studied object detec-
tion and recognition problems. Because the sizes of tensors are
often large, tensor decompositions must be used to reduce the
sizes of tensors. The contents of decomposed tensors should
be evaluated by object detection and recognition methods.
Therefore, we evaluated the impacts of object detection and
recognition problems on both LRSTA and PCA for tensors.

We used a pre-trained YOLOv3 [15] model to measure
our results. Figure 3 shows the detection results of Video

DRAFT
0 200 400 600 800 1000

Rank-One tensors

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e
To

ta
l V

ar
ia

tio
n

LRSTA (RGB)
LRSTA (Gray)
PCA (RGB)
PCA (Gray)

(a) Video 2 (32 frames)

0 200 400 600 800 1000
Rank-One tensors

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
el

at
iv

e
To

ta
l V

ar
ia

tio
n

LRSTA (RGB)
LRSTA (Gray)
PCA (RGB)
PCA (Gray)

(b) Video 2 (64 frames)

Figure 2. Relative total variation vs number of rank-one tensors for Video 2. In the legends of the plots, RGB stands for the colored version of Video 2 and
Gray stands for the gray-scale version. The tensor size is 1920× 1080× 32 for (a) and 1920× 1080× 64 for (b).

Video 1 Video 2

Figure 3. Detection results of LRSTA for Video 1 and 2 with 64 frames. The number of rank-one tensors is 1024. The left sub-figure for each video is the
detection results of the original videos. The right sub-figures are the results of the reconstructed videos from LRSTA.

TABLE I
PRECISION, RECALL, F1 AND AP FOR VIDEO 2 WHEN THE NUMBER OF

RANK-ONE TENSORS IS 4096.

METRIC LRSTA
R1 REMOVED 0 2 4 8

OBJECTS 118 110 106 97
PRECISION 1.0 0.991 1.0 0.970

RECALL 0.620 0.582 0.561 0.513
F1 0.769 0.733 0.719 0.671

AP (PERSON) 0.624 0.582 0.561 0.513
METRIC PCA

R1 REMOVED 0 2 4 8
OBJECTS 92 97 92 93
PRECISION 0.990 1.0 1.0 1.0

RECALL 0.487 0.513 0.487 0.492
F1 0.652 0.678 0.655 0.660

AP (PERSON) 0.487 0.513 0.487 0.492

1 and 2. The number of rank-one tensors is set to 1024.
The confidence threshold for detection is set to 0.8 and the
threshold of non-maximum merge is 0.4. In each panel, the left
sub-figure is the detection results over the original video while
the right sub-figures are the results of the reconstructed videos
by LRSTA. The detection results of PCA reconstructed videos
were poor because images were too blurry. More details can be
found in supplementary materials. For Video 1, the detection

performance of LRSTA is close to that of the original videos.
We then evaluated the impact of non-orthogonality. Because

of the orthogonality of PCA, the rank-one tensors with smaller
singular values can be safely removed without significantly im-
pact the performance. However, orthogonality is not observed
in LRSTA. This was verified in Experiment II by contrasting
the performance before and after removing a few of rank-one

TABLE II
PRECISION, RECALL, F1 AND AP FOR VIDEO 1 AND VIDEO 2.

METRIC VIDEO 1 (1280× 720× 64)
R1 TENSORS 128 256 512 1024
OBJECTS 128 128 135 135
PRECISION 1.0 1.0 0.993 0.993

RECALL 0.914 0.914 0.964 0.964
F1 0.955 0.955 0.978 0.978

AP (PERSON) 0.914 0.914 0.964 0.492
METRIC VIDEO 2 (1920× 1080× 64)

R1 TENSORS 128 256 512 1024
OBJECTS 0 0 5 30
PRECISION 0 0 1.0 0.811

RECALL 0 0 0.013 0.771
F1 0 0 0.025 0.141

AP (PERSON) 0 0 0.013 0.070

DRAFT

tensors with smaller weight values. The object detection results
of YOLOv3 from the original videos were used as the ground
truth. Evaluation metrics include the number of objects (true
positives), precision, recall, F1 scores, and average precision
(AP) for the category of person (Table I). 0, 2, 4 and 8
represent that the metrics are computed given the last 0, 2, 4
and 8 of rank-one tensors removed. # OBJECTS denotes the
number of true positives. This indicates that rank-one tensors,
even those with the smallest weight values, are important
in LRSTA. Removing rank-one tensors with smaller weight
values can affect the performance of object detection.

Experiment IV. The fourth experiment is to study the
impact of resolutions of videos on the choices of numbers
of rank-one tensors. Table II displays how the metrics vary
with the number of rank-one tensors. 128, 256, 512 and 1024
represent that the metrics are computed given number of
rank-one tensor equal 128, 256, 512 and 1024. Note that the
resolution is 1280×720 in Video 1 and 1920×1080 in Video
2. The detection performance increases with the number of
rank-one tensors for both videos. For Video 2, the detection
performance was so poor in the case of 128 and 256 that
no objects were detected. The performance becomes slightly
better when the number of rank-one tensor increases to 512
and significantly better in the case of 1024. Likewise for Video
1, the detection performance with 1024 rank-one tensors was
also better than that of 128, 256 and 512 rank-one tensors.
Our results given by Table II show that 1) for the videos with
the same resolutions, the more rank-one tensors the better the
object detection results; and 2) the higher the resolutions, the
more rank-one tensors are needed to achieve better results in
object detection.

In the experiments, we reproduced the memory bottle issue
in the computation of LRSTA for large-size tensosr with a
large number of rank-one tensors. We demonstrated that our
modified memory-efficient ALS algorithm can overcome the
difficulty. The second experiment compares the performance
of LRSTA with PCA via changing the number of rank-
one tensors. It points out that the relative total variation of
LRSTA is less than that of PCA, but the results given by
LRSTA are not orthogonal, leading to that they can only
be used as a whole. The third experiment studies the object
detection and recognition problems. It shows the impact of
non-orthogonality in LRSTA by removing the rank-one tensors
with smaller weights. The forth experiment studies the impact
of resolutions of videos on the choices of number of rank-
one tensors. For higher the video resolutions, we should
choose larger number of rank-one tensors to achieve better
reconstructed quality and detection performance.

VI. CONCLUSIONS AND FUTURE WORK

This paper discusses how tensor decompositions can be used
to reduce dimensions of HD videos for the deep learning
purpose. A concept of tensor rank for traditional SVD is
provided to connect CPD with SVD for matrices. Memory

bottleneck in previous ALS for LRSTA is investigated. A
memory-efficient method is proposed. The impact of non-
orthogonality in CPD is discussed. This work also provides
theoretical frameworks for low-rank approximations with the
comparison of traditional SVD. Experiments further validate
and reinforce the theoretical analyses via object detection.

Although our research focuses on CPD and PCA, similar
issues also appear in TKD. It is not enough to only study
relative total variations explained by TKD for tensor decom-
position. Image detection and recognition problems must also
be investigated. This is left to future research. To the best
of our knowledge, this is the first work that links SVD and
CPD based on object detection but not total variations. The
deep learning method investigated in this work is currently
limited to YOLOv3. We also plan to further optimize the ALS
algorithms and integrate it with more deep learning methods
and applications. As tensors are most used to represent images
and videos, image detection and recognition issues should be
involved in understanding properties of tensor decompositions.
This is more important than their mathematical properties.

REFERENCES

[1] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[2] R. A. Harshman et al., “Foundations of the parafac procedure: Models
and conditions for an “explanatory” multimodal factor analysis,” 1970.

[3] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[4] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[5] I. T. Jolliffe, “Principal components in regression analysis,” in Principal
component analysis. Springer, 1986, pp. 129–155.

[6] T. Zhang and B. Yang, “Big data dimension reduction using pca,” in
2016 IEEE International Conference on Smart Cloud (SmartCloud).
IEEE, 2016, pp. 152–157.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[8] M. Imaizumi and K. Hayashi, “Tensor decomposition with smooth-
ness,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017, pp. 1597–1606.

[9] E. Richard and A. Montanari, “A statistical model for tensor pca,” in
Advances in Neural Information Processing Systems, 2014, pp. 2897–
2905.

[10] C. J. Hillar and L.-H. Lim, “Most tensor problems are np-hard,” Journal
of the ACM (JACM), vol. 60, no. 6, pp. 1–39, 2013.

[11] M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston, D. Bruns-Smith,
J. Ezick, and R. Lethin, “Memory-efficient parallel tensor decomposi-
tions,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2017, pp. 1–7.

[12] G. Ballard, K. Hayashi, and K. Ramakrishnan, “Parallel nonnegative
cp decomposition of dense tensors,” in 2018 IEEE 25th International
Conference on High Performance Computing (HiPC). IEEE, 2018, pp.
22–31.

[13] K. Hayashi, G. Ballard, Y. Jiang, and M. J. Tobia, “Shared-memory
parallelization of mttkrp for dense tensors,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2018, pp. 393–394.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[15] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

